Palladium-Catalyzed Cleavage of P-C Bonds in Quaternary Phosphonium Salts and Its Applications to Organic Synthesis

Masato Sakamoto, Isao Shimizu, and Akio Yamamoto*

Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169

(Received September 5, 1995)

Phosphonium salts, PPh₄I and PMePh₃I, oxidatively add to Pd(methyl acrylate)(PMePh₂)₂ to give *trans*-[PdPhI(PMePh₂)₂] in moderate yields with cleavage of the P-phenyl bond. Conversely thermolysis of *trans*-PdPhIL₂ (L = PMePh₂ and PPh₃) reductively eliminates PMePh₃I and PPh₄I, respectively. Application of the P-C bond cleavage process in phosphonium salts to olefination, carbonylation and hydrogenation reactions has been explored.

The objectives of the present study are twofold: one is to explore the applicability of the P-C bond cleavage reaction to organic synthesis and the other is to clarify the reason for the occurrence of an unwanted side reaction in Heck type reaction (olefination of aryl halides) to cause involvement of the phenyl group in PPh₃ ligand into the product olefin (Eq. 1). ^{1,2} Formation of the undesired product was accounted for by internal exchange of the aryl ligand in the intermediate complex with the phenyl group in the PPh₃ ligand (Eq. 2). ³ We considered an alternative route to the exchange process involving the reductive elimination of aryl halide and its subsequent combination with the PPh₃ to give quaternary phosphonium salt. ⁴ Oxidative addition of the phosphonium salt with the coordinatively unsaturated Pd(0) species with cleavage of the P-phenyl bond would produce a phenylpalladium halide complex (Eq. 3).

$$Ar-X + Y \xrightarrow{Pd-catalyst} Ar Y + Ph$$

$$Ph-PPh_2 \text{ Internal exchange } Ar-PPh_2$$

$$Ar-Pd-X \xrightarrow{Ph-Ph_3} Ph-Pd-X (2)$$

$$PPh_3 \qquad PPh_3$$

$$Ar-Pd-X \xrightarrow{Ph-Ph_3} Ph-Pd-X (3)$$

$$PPh_2 \qquad Ph-Pd-X (3)$$

$$PPh_3 \qquad Ph-Pd-X (3)$$

$$PPh_3 \qquad Ph-Pd-X (3)$$

$$PPh_3 \qquad Ph-Pd-X (3)$$

$$PPh_3 \qquad Ph-Pd-X (3)$$

In fact treatment of a coordinatively unsaturated Pd(0) complex, Pd(methyl acrylate)(PPh2Me)2 2, with PMePh3I at 60 °C induced the cleavage of the P-phenyl bond in the phosphonium salt to produce trans-[PdPhI(PMePh₂)₂] 3 in 52% yield. Similarly the reaction of 2 with PPh I gave 3 in 57% yield (Scheme 1). Complex 3 can be prepared also by the reaction of 2 with phenyl iodide. Thermolysis of 3 at 80 °C in CD₃CN liberated PMePh₃I and palladium black containing unidentified species having the PMePh, ligand. Similar behavior can be observed with PPh₃-coordinated palladium complexes. Thus, trans-[PdPhI(PPh₃)₂] 4, which can be prepared by oxidative addition of phenyl iodide with Pd(PPh₃)₄, liberates ca. 30% of PPh₄I by refluxing 4 in CH₂Cl₂. Conversely, treatment of Pd(dba)₂ (dba = dibenzylideneacetone) with PPh₄I in CH₂Cl₂ in a 1 : 1 ratio at room temperature, as monitored by ³¹P-NMR, formed the known phenylpalladium complex 5⁶ in 54% yield. The phenylpalladium complex 5 can be also prepared in 75% yield by treatment of Pd(dba)₂ with 1 equiv. of PhI in the presence of 1

Ph₂MeP Et Pd
$$\frac{CO_2Me}{dioxane, 50 °C}$$
 Ph₂MeP $\frac{Pd^{UUU}}{Ph_2MeP}$ CO₂Me $\frac{Ph_2MeP}{Ph_2MeP}$ Pd $\frac{Pd^{UUU}}{Ph_2MeP}$ Ph₂MeP $\frac{Pd^{UUU}}{Ph_2$

equiv. of PPh₃ in CH₂Cl₂ at room temperature with concomitant formation of PPh₄I (11%). The dimeric complex 5 containing one PPh₃ ligand per palladium seems to be more susceptible than 4 having two PPh₃ ligands to loss of the phosphonium salt PPh₄I. Refluxing 5 in CH₂Cl₂ liberated PPh₄I in 92% yield.

$$\begin{array}{c} PPh_{3} & CH_{2}Cl_{2} \\ Pd(PPh_{3})_{4} + PhI & Ph \\ \hline & -2PPh_{3} & Ph \\ \hline & PPh_{3} & CH_{2}Cl_{2} \\ PPh_{3} & & & \\ \hline & & & \\ PPh_{3} & & & \\ \hline & & & \\ Pd(dba)_{2} + PPh_{3} + PhI & Ph \\ \hline & & & \\ PPh_{3} & & & \\ \hline & & & \\ Pd(dba)_{2} & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & & \\ \hline & & & \\ Ph & & & \\ \hline & & & \\ Ph & & & \\ \hline & & & \\ Ph & & & \\ \hline & & & \\ Ph & & & \\ \hline & & & \\ Ph & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & & \\ Ph & & \\ \hline & & \\ Ph &$$

Upon finding the ready cleavage of the P-aryl bond in the phosphonium salt on its interaction with Pd(0) complexes we explored the applicability of the P-C bond cleavage reaction to organic synthesis. Treatment of quaternary phosphonium salt $PRPh_3I$ (R = Me or Ph) with methyl acrylate and triethylamine in the presence of Pd(PPh₃)₄ (10 mol%) in dioxane at 140 °C gave methyl cinnamate in 36% (R = Me) and 32% (R = Ph) yields, respectively (Eq. 4).

The aryl group in PRAr₃I can be carbonylated in the presence of a palladium catalyst and an amine to give an amide 6 in excellent

Table 1. Palladium-Catalyzed Carbonylation of Quaternary Phosphonium Salts.^a

Run	R	Ar	X	Yield of 6 /%	Yield of 7 /%
1^b	Ph	Ph	Ι	< 7	10
2^{c}	Ph	Ph	Cl	96	trace
3 ^c	Ph	Ph	Br	99	trace
4 ^c	Ph	Ph	Ι	67	trace
5 ^d	Me	<i>p</i> -Tol	I	< 10	
6 ^c	Me	Ph	I	79	

^aAll the yields were determined by GLC except for run 1 and 4, where the yields were determined by isolation.

Catalyst used: ^bPdCl₂(PPh₃)₂ (5 mol%). ^cPd(PPh₃)₄ (10 mol%).

to good yields and an α -keto amide 7 in low yields (Eq. 5 and Table 1).

$$PRAr_{3}X + CO \xrightarrow{\text{Pd-catalyst}} \frac{\text{Pd-catalyst}}{\text{dioxane, } 130 ^{\circ}\text{C}} \xrightarrow{\text{ArCNEt}_{2}} + \text{ArCCNEt}_{2} \\ \text{Et}_{2}\text{NH, - PRAr}_{2} \xrightarrow{\text{6}} 7$$

It is noteworthy that the reactivities of PPh_4X (X=I, Br, and Cl) in the carbonylation reaction are independent of the nature of X, whereas those of ArX are significantly dependent on X (reactivity: $I\sim Br>>Cl$).

As an application of the P-C bond cleavage in the phosphonium salts combined with hydrogenation we examined the feasibility of preparation of mixed tertiary phosphines catalyzed by palladium catalysts (Eq. 6 and Table 2). Various phosphonium salts PRPh₃I can be prepared readily by treatment of PPh3 with alkyl and alkenyl iodides. Palladium-catalyzed hydrogenation of the phosphonium in the presence of diethylamine afforded alkyldiphenylphosphines as shown in Table 2. The reaction proceeds only in the presence of palladium catalysts and amine. In these cases, preferential cleavage of the P-aryl bond over the Palkyl bond is recognized, although P-allyl and P-1-propenyl bonds are more reactive than P-aryl bonds (see run 5 and 6 in Table 2). The phosphonium salts, PiPrPh₃I and PnBuPh₃I, show lower reactivity, possibly because of steric reasons (see run 7 and 8 in Table 2). Further substitution of the tertiary phosphine PRPh, with an alkyl group(s) caused decrease in reactivity of the phosphonium salts. No reaction was observed when PMe₂Ph₂I or PMe₃PhI was employed.

PPh₃ + R-I
$$\longrightarrow$$
 PRPh₃⁺ Γ $\xrightarrow{\text{Pd-catalyst}}$ PRPh₂ + Ph-H dioxane 130 °C (6)

This study was supported by grant from Nippon Zeon Co.

Table 2. Palladium-Catalyzed Hydrogenation of Various Phosphonium Salts

	1 nosphomum sans		
Run	Phosphonium Salt	Product	Yield/%
l ^b	PMePh ₃ ⁺ I ⁻	PMePh ₂	96
2	PMePh ₃ ⁺ I ⁻	$PMePh_2$	0^{c}
3^{b}	PMePh ₃ ⁺ I ⁻	$PMePh_2$	0^{d}
4^{b}	PEtPh ₃ ⁺ I	$PEtPh_2$	30
5 ^e	PPh ₃ ⁺ Br ⁻	PPh_3^f , PPh_2	66, 18
6 ^e	PPh ₃ ⁺ Cl ⁻	PPh_3^f , PPh_2	29, 18
7 ^e	P ⁱ PrPh ₃ ⁺ Γ	$P^{i}PrPh_{2}$	~5
8 ^e	$P^nBuPh_3^+I^-$	P^nBuPh_2	11

^aDetermined by GLC. ^bPd(PPh ₃)₄ (1.0 mol%) was used. ^cBlank test without the palladium complex.

and the Grant-in-Aid for Scientific Reserch on Priority Area of Reactive Organometallics No. 05236106 from the Ministry of Education, Science and Culture, Japan.

References

- 1 a) K. Kikukawa, T. Yamane, M. Takagi, and T. Matsuda, J. Chem. Soc., Chem. Commun., 1972, 695; b) T. Yamane, K. Kikukawa, M. Takagi, and T. Matsuda, Tetrahedron, 29, 955 (1973); c) R. Asano, I. Moritani, Y. Fujiwara, and S. Teranishi, Bull. Chem. Soc. Jpn., 46, 2910 (1973); d) T. Kawamura, K. Kikukawa, M. Takagi, and T. Matsuda, Bull. Chem. Soc. Jpn., 50, 2021 (1977); e) K. Kikukawa, M. Takagi, and T. Matsuda, Bull. Chem. Soc. Jpn., 52, 1493 (1979); f) K. Kikukawa, T. Yamane, Y. Ohbe, M. Takagi, and T. Matsuda, Bull. Chem. Soc. Jpn., 52, 1187 (1979); e) D. R. Fahey and J. E. Mahan, J. Am. Chem. Soc., 98, 4499 (1976).
- 2 For an example of the scrambling reaction in palladium catalyzed coupling of aryl halides with arylboronic acids, see, D. F. O'Keefe, M. C. Dannock, and S. M. Marcuccio, *Tetrahedron Lett.*, 33, 6679 (1992).
- 3 a) K. Kong and C. Cheng, J. Am. Chem. Soc., 113, 6313 (1991);
 b) W. A. Herrmann, C. Broβmer, T. Priermeier and K. Öfele, J. Organomet. Chem., 491, C1 (1995).
- 4 a) Y. Hirusawa, M. Oku, and K. Yamamoto, Bull. Chem. Soc. Jpn., 30, 667 (1957); b) L. Cassar and M. Foà, J. Organomet. Chem., 74, 75 (1974); c) J. B. Melpolder and R. F. Heck, J. Org. Chem., 41, 265 (1976); d) C. B. Ziegler and R. F. Heck, J. Org. Chem., 43, 2941 (1978). See also references cited therein.
- 5 B. E. Segelstein, T. W. Butler, and B. L. Chenard, J. Org. Chem., 60, 12 (1995).
- 6 a) V. V. Grushin and H. Alper, Organometallics, 12, 1890 (1993);
 b) V. V. Grushin, C. Bensimon, and H. Alper, Organometallics, 14, 3259 (1995).
- 7 V. V. Grushin and H. Alper, Chem. Rev., 94, 1047 (1994).

^dPd(dba)₂ (10 mol%).

^dBlank test without Et₂NH. ^ePd(dba)₂ (1.0 mol%) was used. ^fFormation of propene was observed.